
Clojure Heap

Grace, Yanting Zhong

Grace, Yanting Zhong
University of Hong Kong
Email: gracez@connect.hku.hk
GitHub: https://github.com/clojure-finance/clojure-heap2

Contact
1. Black (ed.), Paul E. (2004, December 14). Entry for heap in Dictionary of Algorithms and Data Structures. Online version. U.S. National Institute of Standards 

and Technology, 14 December 2004. Retrieved March 23, 2022, from https://xlinux.nist.gov/dads/HTML/heap.html
2. PriorityQueue (Java Platform SE 7). Retrieved March 23, 2022, from https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
3. The Python Standard Library, 8.4. heapq — Heap queue algorithm. Retrieved March 23, 2022, from https://docs.python.org/2/library/heapq.html#heapq
4. Wikimedia Foundation. (2022, March 11). Heap (data structure). Wikipedia. Retrieved March 23, 2022, from 

https://en.wikipedia.org/wiki/Heap_(data_structure)#cite_note-2 

References

This project aims to enable the application of heap 
in Clojure, which can be used to force the order of 
the result file in Clojask.

Abstract
Initialization of an empty heap and heapifying an 
existing collection of integers are both enabled. 
More detailed API usage descriptions are as follows.

Introduction

The project delivers a Clojure wrapper of 
java.util.PriorityQueue. 

Given that the default implementation of Priority 
Queue in Java is a min-heap, there introduces a 
comparator to enable the implementation of a max-
heap in Clojure.

Methodology

While the project is focused on a Clojure wrapper of 
java.util.PriorityQueue, a native implementation of 
Clojure may also be worth exploration. In this case, 
a verification test on logN complexity may be 
necessary. 

Also, the inclusiveness of multi data types inside the 
working collection, e.g., maps, may be another 
direction that requires further work. The expansion 
could be helpful in the application in Clojask.

Limitation

The project realizes the implementation of min- and 
max- heap in Clojure through an empty or existing 
collection and a comparator. Fundamental 
operations including add, remove, pop, poll, 
contains, and size are all enabled in this framework.

Conclusion

A heap is a tree-based data structure that satisfies 
the heap property, which is argued as one 
maximally efficient implementation of a priority 
queue. There are two different types of heaps:

• In a min-heap: for any given node C, if P is a 
parent node of C, then the key of P is less than or 
equal to the key of C. Mathematically, heap[k] <= 
heap[2k+1] and heap[k] <= heap[2k+2], for all k, 
counting from zero.

• In a max-heap: for any given node C, if P is a 
parent node of C, then the key of P is greater 
than or equal to the key of C. Mathematically, 
heap[k] >= heap[2k+1] and heap[k] >= 
heap[2k+2], for all k, counting from zero.

While a heap is partly ordered, it is a helpful when 
the root, i.e., the object with the highest (or lowest) 
priority, is repeated removed from the collection, 
and it realizes a complexity of logN.

Usage

Figure 1. Examples of tree representation and array representation

0 0 1 2 0 7 4 6 3

Min-heap: hpmin

0 1 2 0 7 4 6 3

0 0 1 2 3 7 4 6

Poll the root, return 

Re-heapify

8 6 7 2 1 1 4 0 0

Max-heap: hpax

6 7 2 1 1 4 0 0

7 6 4 2 1 1 0 0

Poll the root, return 

Re-heapify

0

8

Visualization 1. Poll operation on min- and max- heap

mailto:gracez@connect.hku.hk
https://github.com/clojure-finance/clojure-heap2

