#% | BH
4| 58

ABSTRACT

N 1)C - ¢
A €] E 0 s
) N DADRD

Clojure is one of the dialects of Lisp, developed with the code-as-data philosophy. Together with the powerful macro
system, a variety of Domain-specific Languages (DSL) could be developed conveniently. This research project focus

on integrating panda style data processing DSL into Cloju

re, exploring the limits of Clojure. The developed data pro-

cessing DSL Is based on an existing data processing library, tech.ml.dataset. It provides the basic data processing
operations for the project. This development of the DSL has three stages: conceptual, fundament and syntax design.
The conceptual phase involves experimenting with Clojure macro system and defining the project goal. The Funda-
ment stage involves the development of the fundamental pipeline of the DSL, following the logical processing order

of the SELECT statement in Structured Query Language
Clojure syntax was explored.

USE OF MACROS

The macro system in Clojure allows the compiler to
be extended by code. It reads the input code as data,
phrasing it into a different code for execution. The
transformation using the macros could be defined
by the user.

(SQL). Lastly, during the syntax design part, the limits of

SQL

Structured Query Language is a declarative query lan-
guage designed for managing the data in a Relational Da-
tabase Management System (RDBMS). The SELECT
statement query of the SQL is very similar to the query of
the DSL developed in this project. The logical processing
order of the SELECT statement has been adopted in the
DSL.

DSL LOGICAL PROCESSING ORDER

RESULTS

Query Syntax

dt-get data ‘[ROW-SELECTION-SECTION &
COL-SELECTION-SECTION & OPTIONS

Row Selection Syntax

[col filter-function] OR row-index

Column Selection Syntax

col

Optional Syntax

operation-keyword operation-args
Group by Sort by

:group-by col

Aggregate Column
aggregate-keyword col

:sort-by col sorting-funtion

group or an anggregate

1T WHERE Specifies the search condition for the rows
2 ROW Specifies the row index for the rows

3 GROUP BY Divides the query into groups of rows

4 HAVING Specifies the search condition for a

5 SELECT Specifies the columns to be returned

6 ORDERED BY Sorts the data returned

EXAMPLES

Select rows with salary > 300, age < 20
dt-get data ‘[[:salary #(> % 300)] [:age #(< % 20)] &

]

DSL Logic

Query Code

Phrasing using
Macros

Argument Map

Library Func-
tion Call with
SQL Logic

Query Result

: ¥]

Group rows by age with sum of salary > 1000

dt-get data ‘[[:sum :salary #(> % 1000)] & :age :sum

:salary & :group-by :age]

Group rows by age, sort by SD of salary in descending order

dt-get data ‘[:* & :age :sd :salary & :group-by :age

:sort-by :sd :salary >]

Group rows by age and name

dt-get data ‘[:* & :age :name
:age :name]

:sum :salary &:group-by

