
Clojure Heap

I. Introduction

This project aims to enable the application of heap in Clojure, which can be used to force the order of the
result file in Clojask.

A heap is a tree-based data structure that satisfies the heap property, which is argued as one maximally
efficient implementation of a priority queue. There are two different types of heaps:

In a min-heap: for any given node C, if P is a parent node of C, then the key of P is less than or equal to
the key of C. Mathematically, heap[k] <= heap[2k+1] and heap[k] <= heap[2k+2] , for all k,
counting from zero.
In a max-heap: for any given node C, if P is a parent node of C, then the key of P is greater than or
equal to the key of C. Mathematically, heap[k] >= heap[2k+1] and heap[k] >= heap[2k+2] , for all
k, counting from zero.

While a heap is partly ordered, it is a helpful when the root, i.e., the object with the highest (or lowest)
priority, is repeated removed from the collection, and it realizes a complexity of logN.

II. Methodology

The project delivers a Clojure wrapper of java.util.PriorityQueue . Given that the default
implementation of PriorityQueue in Java is a min-heap, there introduces a comparator to enable the
implementation of a max-heap.

III. Usage

Initialization of an empty heap and heapifying an existing collection of integers are both enabled. More
detailed API usage descriptions are as follows.

The way to initiate an empty min-heap: init-empty

The way to initiate an empty max-heap: init-empty

user=> (def hmin (init-empty))
#'clojure-heap.core/hmin
user=> hmin
#object[java.util.PriorityQueue 0x62c1a9c2 "[]"]

user=> (def hmax (init-empty >))
#'clojure-heap.core/hmax
user=> hmax
#object[java.util.PriorityQueue 0x5a34485d "[]"]

The way to min-heapify a collection: init

The way to max-heapify a collection: init

The way to add a new element to the heap: add

The way to remove an element from the heap: remove

The way to return the root of the heap without changing the heap: pop

The way to return the root and take it out of an existing heap: poll

user=> (def hpmin (init [6 8 7 0 0 1 4 3 2]))
#'clojure-heap.core/hpmin
user=> hpmin
#object[java.util.PriorityQueue 0x2448f167 "[0, 0, 1, 2, 6, 7, 4, 8, 3]"]

user=> (def hpmax (init [6 8 7 0 0 1 4 3 2] >))
#'clojure-heap.core/hpmax
user=> hpmax
#object[java.util.PriorityQueue 0x3f84b171 "[8, 6, 7, 3, 0, 1, 4, 0, 2]"]

user=> (add hpmin 0)
#object[java.util.PriorityQueue 0x2448f167 "[0, 0, 1, 2, 0, 7, 4, 8, 3, 6]"]
user=> (add hpmax 1)
#object[java.util.PriorityQueue 0x3f84b171 "[8, 6, 7, 3, 1, 1, 4, 0, 2, 0]"]

user=> (remove hpmin 8)
#object[java.util.PriorityQueue 0x2448f167 "[0, 0, 1, 2, 0, 7, 4, 6, 3]"]
user=> (remove hpmax 3)
#object[java.util.PriorityQueue 0x3f84b171 "[8, 6, 7, 2, 1, 1, 4, 0, 0]"]

user=> (pop hpmin)
0
user=> hpmin
#object[java.util.PriorityQueue 0x2448f167 "[0, 0, 1, 2, 0, 7, 4, 6, 3]"]
user=> (pop hpmax)
8
user=> hpmax
#object[java.util.PriorityQueue 0x3f84b171 "[8, 6, 7, 2, 1, 1, 4, 0, 0]"]

The way to check if the heap contains an element: contains

The way to get the size of the heap: size

IV. Limitation

While the project is focused on a Clojure wrapper of java.util.PriorityQueue, a native implementation of
Clojure may also be worth exploration. In this case, a verification test on logN complexity may be necessary.
Also, the inclusiveness of multi data types inside the working collection, e.g., maps, may be another
direction that requires further work. The expansion could be helpful in the application in Clojask.

V. Conclusion

The project realizes the implementation of min- and max- heap in Clojure through an empty or existing
collection and a comparator. Fundamental operations including add remove pop poll contains size
are all enabled in this framework.

Reference

Black (ed.), Paul E. (2004, December 14). Entry for heap in Dictionary of Algorithms and Data Structures. Online
version. U.S. National Institute of Standards and Technology, 14 December 2004. Retrieved March 23, 2022,
from https://xlinux.nist.gov/dads/HTML/heap.html

PriorityQueue (Java Platform SE 7). Retrieved March 23, 2022, from https://docs.oracle.com/javase/7/docs/a
pi/java/util/PriorityQueue.html

user=> (poll hpmin)
0
user=> hpmin
#object[java.util.PriorityQueue 0x2448f167 "[0, 0, 1, 2, 3, 7, 4, 6]"]
user=> (poll hpmax)
8
user=> hpmax
#object[java.util.PriorityQueue 0x3f84b171 "[7, 6, 4, 2, 1, 1, 0, 0]"]

user=> (contains hpmin 0)
true
user=> (contains hpmax 5)
false

user=> (size hpmin)
8
user=> (size hpmax)
8

https://en.wikipedia.org/wiki/Dictionary_of_Algorithms_and_Data_Structures
https://xlinux.nist.gov/dads/HTML/heap.html
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html

The Python Standard Library, 8.4. heapq — Heap queue algorithm. Retrieved March 23, 2022, from https://
docs.python.org/2/library/heapq.html#heapq

Wikimedia Foundation. (2022, March 11). Heap (data structure). Wikipedia. Retrieved March 23, 2022, from h
ttps://en.wikipedia.org/wiki/Heap_(data_structure)#cite_note-2

https://docs.python.org/2/library/heapq.html#heapq
https://en.wikipedia.org/wiki/Heap_(data_structure)#cite_note-2

	Clojure Heap
	I. Introduction
	II. Methodology
	III. Usage
	IV. Limitation
	V. Conclusion
	Reference

