Faculty of Business and Economics

The University of Hong Kong

Data Processing Domain-Specific Language in Clojure
Research Report

20 March, 2022

CHOI Chong Hing

Supervised by Dr. Matthias Buehlmaier

Abstract

Clojure is one of the dialects of Lisp, developed with the code-as-data philosophy. Together with
the powerful macro system, a variety of Domain-specific Languages (DSL) could be developed con-
veniently. This research project focus on integrating panda style data processing DSL into Clojure,
exploring the limits of Clojure. The developed data processing DSL is based on an existing data
processing library, tech.ml.dataset[1]. It provides the basic data processing operations for the project.
This development of the DSL has three stages: conceptual, fundament and syntax design. The con-
ceptual phase involves experimenting with Clojure macro system and defining the project goal. The
Fundament stage involves the development of the fundamental pipeline of the DSL, following the log-
ical processing order of the SELECT statement in Structured Query Language (SQL). Lastly, during

the syntax design part, the limits of Clojure syntax was explored.

Acknowledgements

I would like to express my special thanks of gratitude to Dr Matthias Buehlmaier for giving me this
valuable chance to get involved in this research project. This project would not be possible without

his guidance and support throughout the project.

ii

Contents

Abstract i
Acknowledgements ii
List of Figures iv
List of Tables iv
Abbreviations v
1 Introduction 1
1.1 Overviewo o e e e 1
1.2 Macros in Clojure L e 1
1.3 Domain-specific Language Lo 2
1.4 Objectives L e e 2
1.5 Report Outline e 2
2 Methodology 3
2.1 Imtroduction 3
2.2 Structured Query Language Lo 4
2.2.1 SELECT Statement Logical Processing Order 4
2.2.2 DSL Logical Processing Order 5
2.3 Summary e e e 5
3 Project Schedule
3.1 Overviewo e
3.2 Project Schedule
4 Project Results
4.1 Syntax Structure Lo 8
4.2 Examples 12
5 Conclusion 14
References 15

iii

List of Figures

1.1 Clojure Compilation Overview [2] 1
2.1 Overview of Methodology 3
4.1 DSL Query Syntaxo e 8
4.2 Row Selection by Filter 8
4.3 Row Selection by Index L 8
4.4 Row Selection with Both Filter and Row Index 9
4.5 Column Selection L 9
4.6 Optional Operation 9
4.7 Group by e e 10
4.8 Sort by ... e 10
4.9 An Aggregate Column oL 11
List of Tables

2.1 Logical Processing Order of the SELECT Statement[3]

2.2 Logical Processing Order of the DSL,

3.1 Project Schedule 6
4.1 Aggregate Functions L 11
4.2 data Used in the Examples 12

Abbreviations

DSL

GPL

RDBMS

SQL

Domain-specific Language

General-purpose Language

Relational Database Management System

Structured Query Language

1 Introduction

1.1 Overview

Clojure is a functional programming language, a dialect of Lisp. It is excellent for concurrency
operations with concise syntax and immutable data structures. It simplifies concurrency or multi-
threaded programming due to its immutable core data structures. The in-built macro system in the

Lisp languages with the code-as-data philosophy also enables huge flexibility in programs.

1.2 Macros in Clojure

The macro system in Clojure allows the compiler to be extended by code. It reads the input code as
data, phrasing it into a different code for execution. The transformation using the macros could be

defined by the user.

Source
File User
(REPL)
Reader Another
(read) Program Eray—
— File
In Memory . Jﬁ
Data Compiler Virtual
Structures (eval) Machine

L.

In Memory
Byte Code

Macro

Figure 1.1: Clojure Compilation Overview [2]

Figure 1.1 shows the overview of the Clojure compilation. The macro system lies in a loop in the
memory data structures, it represents the transformation between code and data through macros. Such
a feature provides an excellent foundation for defining a syntax in Clojure, subject to its fundamental

syntax.

1.3 Domain-specific Language

Domain-specific Language is a computer language, declared syntax or grammar that is specialised in
a specific application. In contrast to General-purpose Language (GPL), the implementation of DSL
is designed with specific goals in that application domain. The use of macros in Lisp dialects enables
developers to rewrite source code at compile-time, making implementation of DSL more convenient.
As one of the Lisp dialects, Clojure also inherits such an advantage. In addition to macros, the heavy
use of core data literals in Clojure also gives an extensive developing opportunity in implementing
DSLs.

1.4 Objectives

In this project, a DSL extension to the existing data processing library, tech.ml.dataset[1], will be
developed. A generic query using core data literal serves as the foundation of the DSL. This enables

huge flexibility in defining the syntax, subject to Clojure’s limitation.

1.5 Report Outline

This progress report is structured into five chapters. The first chapter offers a brief overview of Clojure

and the background of the project. It also gives the objectives of the project.

Chapter two analyses the methodology of the project. The fundamental pipeline of the DSL is ex-
plained in this chapter. This includes the introduction to Structured Query Language,

Chapter three shows the development process of the project. It also presents the project sched-

ule.

Chapter four explains the results of the project. The details of the pipeline and syntax design will be

discussed in this chapter.

Chapter five concludes the report, summing up all the results made in the project.

2 Methodology

2.1 Introduction

This chapter explains the methods used in the development of the DSL in this project. The pipeline
of the DSL will be discussed. The logic of query operation in SQL and the DSL will also be explained
in this chapter.

Query Code

Phrasing using

Macros

Argument Map

for Operations

Library Function Call
with SQL Logic

Result Table

Figure 2.1: Overview of Methodology

Figure 2.1 shows the overview of the methodology of the project. The DSL takes the query code
written in the custom syntax as input, phrasing it into a Clojure map containing the arguments of
different operations. The library functions are called according to the SQL query logic, returning the
data table.

2.2 Structured Query Language

Structured Query Language is a declarative query language designed for managing the data in a
Relational Database Management System (RDBMS).

2.2.1 SELECT Statement Logical Processing Order

The SELECT statement query of the SQL is very similar to the query of the DSL developed in this
project. The logical processing order of the SELECT statement has been adopted in the DSL.

Table 2.1: Logical Processing Order of the SELECT Statement|3]

Order Operations Description
1 FROM Specifies a table, view, table variable, or derived table source,
with or without an alias, to use in the Transact-SQL statement
2 ON Specifies arbitrary conditions or specify columns to join
3 JOIN Retrieves data from two or more tables based on
logical relationships between the tables
4 WHERE Specifies the search condition for the rows returned by the query
5 GROUP BY Divides the query result into groups of rows
WITH CUBE
6 Extend functions for GROUP BY
WITH ROLLUP
7 HAVING Specifies a search condition for a group or an aggregate
8 SELECT Specifies the columns to be returned by the query
9 DISTINCT Specifies to return only distinct values
10 ORDER BY Sorts data returned by a query in SQL Server
11 TOP Specifies the number of records to return

Table 2.1 shows the logical processing order of a SELECT statement in SQL. The development of

the pipeline in this project has referenced its logic, making a generic query possible.

2.2.2 DSL Logical Processing Order

In contrast to the complete query of the SELECT statement in SQL, the DSL developed has fewer

operations involved. Table 2.2 shows the logical processing order of the DSL developed.

Table 2.2: Logical Processing Order of the DSL

Order | Operations Description
1 WHERE Specifies the search condition for the rows returned by the query
2 ROW Specifies the row index for the rows returned by the query
3 GROUP BY Divides the query result into groups of rows
4 HAVING Specifies a search condition for a group or an aggregate
5 SELECT Specifies the columns to be returned by the query
6 ORDER BY Sorts data returned by a query

The DSL developed supports only a few operations shown in Table 2.2. However, one may discover
that the DSL supports the uses of row index for query, which is not supported in the SELECT
statement in SQL.

2.3 Summary

This chapter explained the methodology used in this project. The logical processing order of the
SELECT statement in SQL and DSL are explained in this chapter. The next chapter will show the

development process of this project.

3 Project Schedule

3.1 Overview

This chapter presents the project schedule and the development stages for the DSL in the project.

The achievements of different stages are also discussed in this chapter.

3.2 Project Schedule

Table 3.1 shows the project schedule for the project.

Table 3.1: Project Schedule

Timeline Task
Nov 21 Literature Review
Dec 21 Conceptual Phase

Jan 22 | Fundaments Development

Feb 22 Syntax Design

Mar 21 Additional Feature

Literature Review

During this phase, a comprehensive review of Clojure was done. This includes some coding practices
and documentation review. This has solidated the coding skills in Clojure, helping to understand

Clojure’s abilities and limitations. It also helped us understand functional programming in general.

Conceptual Phase

The conceptual phase mainly focused on deciding the topic of this research topic. With the under-
standing developed in the previous stage, the topic of developing a DSL has been decided for the
project at this stage. The pipeline for the DSL was also decided and designed during this phase.

Fundaments Development

During this stage, a generic query with an argument map was developed. It serves as the foundation
of the project DSL. It includes a combination of data query operations, including selecting rows and
columns, filtering with conditions and group by. The generic query should be able to execute multiple
operations. To achieve such promise, the processing steps of SQL has been used as a reference in
designing the generic query. This corresponds to the ‘Library Function Call with SQL Logic’ in
Figure 2.1.

Syntax Design

With the generic query foundation implemented, the design of syntax is the next step. In this stage,
the mix of Clojure literals and macros are used, depending on the syntax design. The macro system
in Clojure, and other Lisp dialects, allows developers to extend the compiler by manipulating code
expression at compile-time. It suspends the compilation of an expression and brings the expression
for user manipulation. Expressions with wrong grammar or unknown keywords could be correctly
and manually compiled via macros, making different expressions possible in Clojure. With the use
of macros, the implementation syntax will be much more flexible. Ultimately, a syntax with pandas-
Clojure style is designed and implemented. This corresponds to the ‘Phrasing using Macros’ in Figure
2.1.

Additional Feature

During this stage, additional features like sorting and selecting all columns were added to the existing
DSL system. These have been implemented by adjusting the syntax and the fundamentals of the DSL

system. Debug was also done during this stage.

4 Project Results

This chapter explains the project results, including the DSL syntax design. The design will be dis-

cussed in Section 4.1. Some examples will be displayed in Section 4.2.

4.1 Syntax Structure

The syntax of the DSL takes a data table in the first input and query arguments in the second input.
The argument input has three sections: row selection section, column selection section and optional

section, separated by the symbol ‘&
dt-get data '[ROW-SELECTION-SECTION & COLUMN-SELECTION-SECTION & OPTIONS]

Figure 4.1: DSL Query Syntax

Figure 4.1 shows an overview of the query syntax. Here, dt-get is a macro because of the use of
the symbol ‘&’
Row Selection Section

The first section of the argument input is the row selection section. It corresponds to the WHERE,
HAVING and ROW operations in Table 2.2. The user could either select the rows using filters or by

row index. The use of a filter would override row index selection.

[col filter-function]

Figure 4.2: Row Selection by Filter

Figure 4.2 shows the syntax of row selection using a filter. col refers to the column to be filtered,
:* can be used to include all rows. filter-function refers to the filtering function. This is one of
the powerful features - the filtering function can any custom function returning a boolean result. One
can define a filtering function for the selection using Clojure built-in fast function syntax: #{ ... }.

This is valid as long as it returns a boolean.
row-index

Figure 4.3: Row Selection by Index

Figure 4.3 shows the syntax of row selection using row index. row-index refers to the index of

the desired row.

[col filter-function] row-index

Figure 4.4: Row Selection with Both Filter and Row Index

Figure 4.4 shows the case where filtering overrides the use of row index. In this case, the filtering
function would override the row index. The pipeline will ignore the row-index part, making this

expression equivalent to the expression in Figure 4.2.
Column Selection Section
The second section of the argument input is the selection of columns.

col

Figure 4.5: Column Selection

Figure 4.5 shows the syntax of column selection. col refers to the column selected, :* can be used

to represent all columns.

Optional Section

The third section of the argument section is the optional section. This section specifies all the optional
operations, including the GROUP BY and SORT BY operations.

operation-keyword operation-arguments

Figure 4.6: Optional Operation

Figure 4.6 shows the syntax of an optional operation. operation-keyword refers to the op-
eration keyword for the program to identify the operation. It includes :group-by and :sort-by.

operation-arguments refers to the corresponding operation arguments, subject to the operation.

:group-by col

Figure 4.7: Group by

Figure 4.7 shows the syntax of a group by operation. col refers to the column(s) to be grouped.

:sort-by col sort-by-function

Figure 4.8: Sort by

Figure 4.8 shows the syntax of a sort by operation. col refers to the column to be sorted. sort-
by-function refers to the sorting function, with < (ascending order) as default. Similar to the filtering
function, the sorting function can be any custom function returning a boolean result. It can also be

Clojure operator like < or >, clojure.core/compare or custom java.util.Comparator.

10

Aggregate Function

With the group-by operation is implemented, aggregate functions are also needed to be implemented

in the syntax.

aggregate-keyword col

Figure 4.9: An Aggregate Column

Figure 4.9 shows the syntax of an aggregated column. aggregate-keyword specifies the aggre-
gated function. col refers to the column to be aggregated. One could directly replace the aggregated
column syntax in any column argument. Table 4.1 shows the complete aggregate functions available

and the corresponding aggregate keywords.

Table 4.1: Aggregate Functions

Aggregate Function Keyword
Minimum :min
Maximum :max

Mode :mode
Summation zsum
Standard Deviation :sd
Skew :skew
No of Valid Rows :n-valid
No of Missing Rows | :n-missing
Total No of Rows :n

11

4.2 Examples

This section displays some of the examples with the DSL syntax. data in Table 4.2 will be used in

the examples.

Table 4.2: data Used in the Examples

:age :name :salary

31 a 200
25 b 500
18 C 200
18 C 370
25 d 3500

Example 1

Select rows with salary > 300, age < 20

dt-get data '[[:salary #(< 300 %)] [:age #(> 20 %)] & :*]

:age :name :salary

18 C 370

Example 2

Group rows by age with sum of salary > 1000, show age and sum of salary

dt-get data '[[:sum :salary #(< 1000 %)] & :age :sum :salary & :group-by :age]

:age :salary-sum

25 4000

12

Example 3

Group rows by age, show age, sum of salary and standard deviation of salary, sorted by standard
deviation of salary in descending order

dt-get data '[:* & :age :sum :salary :sd :salary & :group-by :age :sort-by :sd :salary >]

:age :salary-sum :salary-sd

25 4000 2121.32
18 570 120.21
31 200 0

Example 4

Group rows by age and name, show age, name and sum of salary

dt-get data '[:* & :age :name :sum :salary & :group-by :age :name]

:age :name :salary-sum

31 a 200
25 b 500
18 c 570
25 d 3500

13

5 Conclusion

This project has developed a DSL that integrates pandas style queries into Clojure with the help of
the powerful macros system. It explores the abilities and limits of Clojure in creating new syntax.
The resulting DSL can perform a basic query with row selection, column selection, group by operation

and sorting.

14

References

[1] “Techascent/tech.ml.dataset: A clojure high performance data processing system.” (), [Online].
Available: https://github.com/techascent/tech.ml.dataset.

[2] A. Ortiz. “Clojure macros” (), [Online]. Available: https://arielortiz. info/s201911/
tc2006/clojure_macros/clojure_macros.html

[3] Microsoft. “Select (transact-sql) - sql server.” (), [Online]. Available: https://docs.microsoft.
com/en-us/sql/t-sql/queries/select-transact-sql?redirectedfrom=MSDN& ;
view=sql-server-verls.

15

https://github.com/techascent/tech.ml.dataset
https://arielortiz.info/s201911/tc2006/clojure_macros/clojure_macros.html
https://arielortiz.info/s201911/tc2006/clojure_macros/clojure_macros.html
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Overview
	Macros in Clojure
	Domain-specific Language
	Objectives
	Report Outline

	Methodology
	Introduction
	Structured Query Language
	SELECT Statement Logical Processing Order
	DSL Logical Processing Order

	Summary

	Project Schedule
	Overview
	Project Schedule

	Project Results
	Syntax Structure
	Examples

	Conclusion
	References

